Search results for "Alternating decision tree"

showing 3 items of 3 documents

Alternating model trees

2015

Model tree induction is a popular method for tackling regression problems requiring interpretable models. Model trees are decision trees with multiple linear regression models at the leaf nodes. In this paper, we propose a method for growing alternating model trees, a form of option tree for regression problems. The motivation is that alternating decision trees achieve high accuracy in classification problems because they represent an ensemble classifier as a single tree structure. As in alternating decision trees for classification, our alternating model trees for regression contain splitter and prediction nodes, but we use simple linear regression functions as opposed to constant predicto…

Boosting (machine learning)Computer scienceWeight-balanced treeDecision treeLogistic model treeStatistics::Machine LearningComputingMethodologies_PATTERNRECOGNITIONTree structureStatisticsLinear regressionAlternating decision treeGradient boostingSimple linear regressionAlgorithmProceedings of the 30th Annual ACM Symposium on Applied Computing
researchProduct

Comparison of machine learning models for gully erosion susceptibility mapping

2020

© 2019 China University of Geosciences (Beijing) and Peking University Gully erosion is a disruptive phenomenon which extensively affects the Iranian territory, especially in the Northern provinces. A number of studies have been recently undertaken to study this process and to predict it over space and ultimately, in a broader national effort, to limit its negative effects on local communities. We focused on the Bastam watershed where 9.3% of its surface is currently affected by gullying. Machine learning algorithms are currently under the magnifying glass across the geomorphological community for their high predictive ability. However, unlike the bivariate statistical models, their structu…

Watershed010504 meteorology & atmospheric sciencesComputer scienceBivariate analysisLogistic model tree model010502 geochemistry & geophysicsMachine learningcomputer.software_genre01 natural sciencesLogistic model treeNatural hazardEntropy (information theory)Oil erosion0105 earth and related environmental sciencesbusiness.industrylcsh:QE1-996.5Statistical modelGISlcsh:GeologyITC-ISI-JOURNAL-ARTICLEGeneral Earth and Planetary SciencesAlternating decision treeAlternating decision tree modelArtificial intelligenceITC-GOLDbusinesscomputerDecision tree modelGeoscience Frontiers
researchProduct

Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide e…

2015

This study aims to compare binary logistic regression (BLR) and stochastic gradient treeboost (SGT) methods in assessing landslide susceptibility within the Mediterranean region for multiple-occurrence regional landslide events. A test area was selected in the north-eastern sector of Sicily (southern Italy) where thousands of debris flows and debris avalanches triggered on the first October 2009 due to an extreme storm. Exploiting the same set of predictors and the 2009 event landslide archive, BLR- and SGT-based susceptibility models have been obtained for the two catchments separately, adopting a random partition (RP) technique for validation. In addition, the models trained in one catchm…

Atmospheric ScienceSettore GEO/04 - Geografia Fisica E GeomorfologiaStormLandslideRegression analysisOverfittingForward logistic regressionLandslide susceptibilityDebris flowPrediction spatial transferabilityAltitudeMessina 2009 disasterNatural hazardEarth and Planetary Sciences (miscellaneous)Alternating decision treePhysical geographyStochastic gradient treeboostCartographySicilyGeologyWater Science and Technology
researchProduct